
Physical systems 

Mechanical systems 

Mechanical oscillations are of critical importance for the stability of a structure. Building structures 
all have specific natural frequencies and these frequencies can be influenced in various ways. 
 
Resonant frequency (natural frequency): more and more energy is combined in a specific vibration as 
a function in time, leading to an increasing amplitude. 
 
#degrees = #radians * (180°/π) 
 
Simple harmonic motions occur throughout the natural world. A simple harmonic motion follows a 
straight line (the x-direction). 
 
x(t) = A*sin(ωt+α) 
A is the maximum displacement: amplitude 
ω is the angular frequency, ω = 2πf = 2π/T (f = frequency) 
α is the phase at time t = 0 
 
sin α = sin(α+n2π) 
 
The displacement is maximum in the positive x-direction when sin(ωt+α) = 1, which happens when 
ωt+α = 1/2π+n2π. The displacement is then equal to the amplitude A. 
The displacement is maximum in the negative x-direction when sin(ωt+α) = -1, which happens when 
ωt+α = 3/2π+n2π. The displacement is then equal to the negative amplitude -A. 
 
The speed of a particle is the derivative of the position: 

v = 
𝑑𝑥

𝑑𝑡
 = 

𝑑[𝐴∗sin(𝜔𝑡+𝛼)]

𝑑𝑡
 = ωA*cos(ωt+α) 

 
By maximum displacement, x = A and therefore ωt+α = 1/2π+n2π. Then cos(ωt+α) = 0 and thus v = 0. 
By displacement is 0, x = 0, and therefore ωt+α = n2π. Then cos(ωt+α) = 1, and therefore the speed is 
at its maximum, ωA. 
 
The force acting on a particle can be calculated by applying the second law of Newton: 

F = m*a = m*
𝑑𝑣

𝑑𝑡
  as a = 

𝑑𝑣

𝑑𝑡
 

F = -mω2A*sin(ωt+α) = -mω2x 
𝑑2𝑥

𝑑𝑡2 + ω2x = 0  amax = Aω2 

 
Spring 
Law of Hooke: F = -kx. In this formula, k is the elasticity constant. 

ω = √
𝑘

𝑚
  ; T = 

2𝜋

𝜔
 = 2π√

𝑚

𝑘
 

With a spring constant k two times larger, the oscillation frequency increases by √2. 
 
Ekin = 1/2mv2 = 1/2mω2A2cos2(ωt+α) 

Epot = ∫ −𝐹 𝑑𝑥
𝑥

𝑥=0
 = ∫ 𝑚𝜔2𝑥 𝑑𝑥

𝑥

𝑥=0
 = 1/2mω2x2 = 1/2mω2A2sin2(ωt+α) 

Etot = Ekin + Epot = 1/2mω2A2 depends on the elasticity constant and the maximum amplitude 
 



A harmonic oscillator works as an isolated system wherein the total energy remains constant while 
the distribution of this energy between kinetic and potential energies varies in time.  
 
Pendulum 
A mathematical pendulum is an idealized real pendulum: it is a point mass m that is suspended from 
a fixed point P by means of a mass less rigid wire with length L. 
 

x = Lθ  h = L(1-cos(θ)) 
 FT = -mg*sin θ 
 
The minus sign in the formula accounts for the fact 
that the force is opposed to the displacement of the 
pendulum at that moment.  
 

FT = maT = mL
𝑑2𝜃

𝑑𝑡2  = -mg*sin θ (if θ is low, sin θ ≈ θ) 

> 
𝑑2𝜃

𝑑𝑡2  + 
𝑔

𝐿
θ = 0 

 
The solution of this differential equation is: θ = θ0sin(ωt+α) where ω2 = g/L. 
The consequence of a bigger θ is that increasing amplitudes will cause the period T of the oscillation 
to diverge from the above formulas. 
 
The oscillating systems above were not influenced by external forces. In practice there is always 
fraction present. Systems will be driven with a force from outside.  
 

- By giving a push to the object exactly at the maximum displacement, where the speed is 0 
such that the object receives a speed Δv, Ekin . The new kinetic energy is: 1/2m(v±Δv)2. 

- By giving the object an extra potential energy at the maximum displacement (pull it further 
out of the equilibrium position), Epot . 

 
In realistic systems, there is always energy loss. The displacements decreases because of friction. The 

friction is proportional but opposite to the speed: Ffriction = -Cv = -C 
𝑑𝑥

𝑑𝑡
 

Fh + Ffriction = -kx - C 
𝑑𝑥

𝑑𝑡
 = m 

𝑑2𝑥

𝑑𝑡2 

> 
𝑑2𝑥

𝑑𝑡2 + 2γ 
𝑑𝑥

𝑑𝑡
 + ω0

2x = 0   where ω0
2 = 

𝑘

𝑚
  and 2γ = 

𝐶

𝑚
 

 
Addition of an external force will add a harmonic force with an angular frequency ω: F(t) = F0*cos(ωt) 

Fh + Ffriction + F(t) = - kx - C 
𝑑𝑥

𝑑𝑡
 + F0*cos(ωt) = m 

𝑑2𝑥

𝑑𝑡2  

> 
𝑑2𝑥

𝑑𝑡2 + 2γ 
𝑑𝑥

𝑑𝑡
 + ω0

2x = 
 F0

𝑚
 cos(ωt) 

 

Solution without friction: 
𝑑2𝑥

𝑑𝑡2 + ω0
2x = 

 F0

𝑚
 cos(ωt) 

> x(t) = A*cos(ωt-α)  you can only solve when α = 0 or α = π with k = mω2 

 - α = 0: A = 
𝐹0/𝑚

𝜔02− 𝜔2 

  

- α = π: A = 
𝐹0/𝑚

 𝜔2−𝜔02 
 

 
Solution for resonance without friction: ω = ω0

2 -> energy is continuously passed from the driving 
force to the oscillation. 



> x(t) = A(t)*sin(ω0t) We expect a phase difference 1/2π between the system and the 
driving force, this is precisely the difference between a sine and 
cosine. 

 
 F0

𝑚
 cos(ω0t) = 

𝑑2𝐴(𝑡)

𝑑𝑡2  sin(ω0t) + 2 ω0 
𝑑𝐴(𝑡)

𝑑𝑡
 cos(ω0t) 

This equation can be solved when  
𝑑2𝐴(𝑡)

𝑑𝑡2  = 0 > expression is met later 
 F0

𝑚
 cos(ω0t) = 2 ω0 

𝑑𝐴(𝑡)

𝑑𝑡
 cos(ω0t)  ->  

𝑑𝐴(𝑡)

𝑑𝑡
 = 

𝐹0

2𝑚𝜔0
 -> A(t) = 

𝐹0

2𝑚𝜔0
 t + C 

 

> x = ( 
𝐹0

2𝑚𝜔0
 t + C) sin(ω0t)  

  

Solution with friction:  
𝑑2𝑥

𝑑𝑡2  + 2γ 
𝑑𝑥

𝑑𝑡
 + ω0

2x = 0   

> x = A(t)*sin(ωt)     
Results in:  
A”sin(ωt) + 2ωA’cos(ωt) – Aω2sin(ωt) + 2γ (A’sin(ωt)+ ωAcos(ωt)) + Aω0

2 sin(ωt) = 0 
sin(ωt)(A” - Aω2 + 2γA’ + Aω0

2) = 0 and cos(ωt)(2ωA’ + 2γωA) = 0 
From the cosine function follows: A’ = -γA  -> A(t) = Be-γt 
From the sine function follows: γ2A - Aω2 - 2γ2A + Aω0

2 = 0 -> γ2 = ω0
2 - ω2 

 

> x(t) = Be-γt sin(√ω02 − γ2 *t)   (weakly demped: γ<ω0) 

> x(t) = Ae-γt + Bte-γt    (critically demped: γ=ω0) 

> Imaginary numbers    (over-damped: γ>ω0) 
 

Solution forced, damped oscillation: :  
𝑑2𝑥

𝑑𝑡2 + 2γ 
𝑑𝑥

𝑑𝑡
 + ω0

2x = 
 F0

𝑚
 cos(ωt) 

> x = Asin(ωt-α) 
Results in: 

-Aω2sin(ωt-α) + 2γAωcos(ωt-α) + A ω0
2 sin(ωt-α) = 

 F0

𝑚
 cos(ωt) 

USE: sin(a-b) = sin(a)cos(b) – cos(a)sin(b) OR:  cos(a-b) = cos(a)cos(b) + sin(a)sin(b) 

sin(ωt)[A ω0
2cos(α) - A ω2cos(α) + 2γAωsin(α)] + cos(ωt)[Aω2sin(α) - A ω0

2 sin(α) + 2γAωcos(α) - 
 F0

𝑚
 ]= 0 

Both terms in the brackets are constant in time, it is now convenient to divide everything by Acos α. 

sin(ωt)[(ω0
2-ω2) + 2γωtan(α)] + cos(ωt)[(ω2- ω0

2)tan(α) + 2γω - 
 F0

𝐴𝑚𝑐𝑜𝑠(𝛼)
 ] = 0 

From the sine function follows: tan α = 
ω2− ω02

2𝛾𝜔
 

1

cos 𝛼
 = √1 + tan2 𝛼 = √1 +  

(ω2− ω02)2

4𝛾2𝜔2  

 

> x = 
𝐹0

𝑚√(ω2− ω02)2+4𝛾2𝜔2
 sin(ωt-α) with tan α = 

ω2− ω02

2𝛾𝜔
 

 
 

Full solution of weakly damped systems: x = 
𝐹0

𝑚√(ω2− ω02)2+4𝛾2𝜔2
 sin(ωt-α) + Be-γt sin(√ω02 − γ2 *t) 

The last term will decrease significantly. This means that the amplitude after a long period of time 
depends on the amplitude of the driving force F0. 
 
α = a + bi = |α|(cos φ + i sin φ) 

a = |α| cos φ  b = |α| sin φ  |α| = √𝑎2 + 𝑏2 
eix = cos(x) + i sin(x)   -> f’(x) = i*f(x) 
 



Solving the equation for forced, damped oscillations goes in two steps (with imaginary numbers): 
1. Find a solution for the complete, inhomogeneous equation, the particular solution. 
2. Find a solution to the homogeneous version of the equation, the characteristic solution 

which provides the start-up phenomena. 
 

> x = x0 * ei(ωt-α) 

Results in: -ω2x0 * ei(ωt-α) + 2γiωx0 * ei(ωt-α) + ω0
2x0 * ei(ωt-α) = 

 F0

𝑚
 ei(ωt+π/2) 

Divide with ei(ωt-α): 

((ω0
2- ω2) + 2iγω)x0 = 

 F0

𝑚
 ei(α +π/2) 

Separate in real and imaginary part: 

(ω0
2- ω2)x0 =  

 F0

𝑚
 cos(α + π/2) = -  

 F0

𝑚
 sin(α) AND: 2ωγx0 = 

 F0

𝑚
 cos(α) 

Divide the left sides with each other: 

tan α = 
ω2− ω02

2𝛾𝜔
 

Returning to ((ω0
2- ω2) + 2iγω)x0 = 

 F0

𝑚
 ei(α +π/2), multiply with e-i(α + π/2): 

((ω0
2- ω2) + 2iγω)x0*(- sin α – i cos α) =  

 F0

𝑚
 

Real part: x0(-(ω0
2- ω2)sin α + 2ωγ cos α) = 

 F0

𝑚
 

cos α = 1/√1 + tan2 𝛼  sin α = tan α / √1 + tan2 𝛼 

x0 = 
 F0

𝑚
 * 

√1+tan2 𝛼

−(ω02− ω2) tan α+ 2ωγ
  =  

 F0

𝑚
 * 

1

√(ω02− ω2)
2

+ (2ωγ)2

 

 

> x = 
 F0

𝑚
 * 

1

√(ω02− ω2)
2

+ (2ωγ)2

 * ei(ωt-α) 

 

> x = Ceλt 
λ2 + 2γλ + ω0

2 = 0 

λ = -γ ± √𝛾2 − 𝜔02 

x(t) = eλ1t + eλ2t  OR:  x(t) = e-γt (A1e^(√𝛾2 − 𝜔02t) + A2e^-(√𝛾2 − 𝜔02t)) 
 

 Weakly damped oscillation: γ < ω0, the exponents become purely imaginary. 

 Over-damped oscillation: γ > ω0, the exponents become real. 

 Critically damped oscillation: γ = ω0, x(t) = Ae-γt + Bte-γt 

 
The stationary solution is: 

1. The motion is harmonic. 
2. The angular frequency is ω and not ω0. 
3. The amplitude of the oscillation is dependent on ω. 
4. When ω≈ω0, then the amplitude is maximal: resonance. 
5. The amplitude also depends on the friction constant γ, as γ increases, the maximum 

amplitude decreases. 
6. Small values of γ  sharp resonances with large amplitudes. 
7. Large values of γ  broad resonances with small amplitudes. 

  



Electricity 

Electricity begins with charge. The charge of one electron is -1.603*10-19 Coulomb. 1 Coulomb of 
charge is equivalent to that of 6,24 *1018 electrons. 
 
Matter is in general neutral which means that there must also be positive charge carriers. When 
looking at conduction, these carriers are unimportant as they are usually immobile. Positive particles 
are often ions that are fixed in solid material.  
 
In plasmas (gaseous states), both positive and negative charges are able to move. If both types of 
charge move in the same direction then they have opposite effects on the strength of the current. 
 
Under certain conditions, moving charges can cause a ‘current’ of charge (electric currents). The unit 
of current is Coulomb/second (the amount of charge that passes per second) = Ampere.  1A = 1C/s. 
 
In order for a current to run, there has to be a potential difference: electrons must have less electric 
energy after they have passed through this potential difference (voltage source). The greater the 
potential difference, the faster the flow.  
ΔEpot = Q * V = amount of charge * potential difference. 
 
A common potential level has to be defined, relative to which other values are measured. This 
common level is called ‘ground’: a very good conducting rod which is inserted deep into the ground. 
This is done because we want to avoid that our electrical circuit or the charge distribution in the 
object in our setup can change the reference potential. The earth potential will not change.  
 
Ohm’s law: V = I R.  
The electric current I is proportional to the potential difference V. The proportionality constant R is 
the resistance that the electrons meet during the route between two points. 
 
P(ower) = I V (Watts, Joule/second , Volt-Ampere) 
The transformed energy per second (dissipated energy) is equal to the reduction of potential energy 
per second. 
 
P = I V = I I R = I2 R = V2/R 
 
The resistance depends on the type of metal of the wire.  
Resistivity or specific resistance (ρ): a material constant that the describes the resistance of a wire of 
certain dimensions. 
 
R = ρ L / a = ρ L / πr2 (Ω)  ρ = R a / L (Ωm) 
Standard resistances exist for electric circuits. These resistances are distinguished from each other 
according to certain coding. 
 
Voltage sources give a potential difference while resistors decrease the potential difference when 
they conduct a current.  
 
Kirchhoff’s first law: the algebraic sum of the amperages of the wires that come together in a hub is 
0. The direction of the current in relation to the hub also needs to be taken into account. 
Kirchhoff’s second law: the sum of all potential differences is 0. The sum of all voltage supplies is 
equal to the sum of the potential drop across each of the resistors in this circuit. 
 
In series: V – IR1 – IR2 = 0  Rs = R1 + R2  Vs = V1 + V2 
In parallel: I1R1 – I2R2 = 0   1/Rs = 1/R1 + 1/R2 Is = I1 + I2 



Batteries: the basic principle is that chemical energy in the battery transforms into electric energy. 
There are always two different electrodes, during the process of current generation, atoms from one 
electrode are carried over to the other one. The battery consists of the anode, the cathode and the 
electrolyte.  
 
Time dependent electricity 
 
Capacitors: electronic components in which a charge can be stored. It basically consists of two 
electrodes that are separated by an insulator. The charge is stored close to each other, so that the +- 
attractive force compensates the repulsive forces. Special types of capacitors are adjustable in their 
capacity.  
 
Leakage influences the working of the capacitors. The size and cause of the leakage differs per type 
of capacitor. The leakage resistance determines how long it will take for the voltage to drop after a 
device has been charged.  
 
If a charge Q is stored, a voltage V is created over the terminals of the capacitor which is proportional 
to the amount of charge. The capacitor C is the charge which is needed to obtain a voltage of  1V 
over this capacitor. 
Q = C*V (Farad, Coulomb/Volt)  p = 10-12 n = 10-9  µ = 10-6 

 
In series:  Vsource = V1 + V2  Q is equal over both capacitors  1/Cv = 1/C1 + 1/C2 
In parallel: V is equal over both capacitors Qtotal = Q1 + Q2  Cs = C1 + C2 
 
A circuit with a power supply V, a resistor R and a capacitor C: 
V = I R + Q / C 
Differentiate in time: 

0 = R 
𝑑𝐼

𝑑𝑡
 + 

1

𝐶
 
𝑑𝑄

𝑑𝑡
  

𝑑𝑄

𝑑𝑡
 is always equal to I    

𝑑𝐼

𝑑𝑡
 = - 

1

𝑅𝐶
 I 

> I(t) = K * e-t/RC 
I(0) = V/R = K 
 

> I(t) = 
𝑉

𝑅
 * e-t/RC   VR = I R = V * e-t/RC 

The speed of decrease depends on the RC product: the RC time in seconds.  
 

VC(t) =  
𝑄(𝑡)

𝐶
 = 

1

𝐶
 ∫ 𝐼(𝑡)𝑑𝑡

𝑡

𝑜
 = - V [e-t/RC]t/0  = V(1- e-t/RC) 

V = VC + VR (this can be verified by the formulas above) 
 
 
Inductor: a conductive wire that is coiled many times. A coil is a conducting wire which is wound in a 
circle form, often, around a core of iron or another material. A change of current through such a 
wound wire has the effect that a force arises which opposes the change (the law of Lenz). 
 
The changing current causes a changing magnetic field. This field creates a voltage in the coil, which 
is proportional to the speed with which the magnetic field changes and the size of the coil. 
 

VL = -L 
𝑑𝐼

𝑑𝑡
  

The induction voltage opposes the changes in the current, L is the self-induction and dI/dt is the 
speed with which the current changes. 
 



The unit of self-induction is Henry (H). In a coil of 1 Henry, a voltage of 1 Volt is created  for a change 
of 1 A/s in the current.  

 
Here VL is the difference between after (VB) and before (VA). 
 

Suppose that I increases, then -L 
𝑑𝐼

𝑑𝑡
 is negative  VA > VB 

Suppose that I decreases, then -L 
𝑑𝐼

𝑑𝑡
 is positive  VA < VB 

 
After switching on, the current will stay under its final value for a while 
due to the opposing force in the inductor. 

V = I R + L 
𝑑𝐼

𝑑𝑡
    L 

𝑑𝐼

𝑑𝑡
  = V – I R 

 

Z = V – I R  > 
𝑑𝑍

𝑑𝑡
  = - R 

𝑑𝐼

𝑑𝑡
  > 

𝑑𝐼

𝑑𝑡
 = - 

1

𝑅
 
𝑑𝑍

𝑑𝑡
 

Results in:  
𝑑𝑍

𝑑𝑡
  =  

−𝑅

𝐿
 Z 

> Z(t) = K e-Rt/L   > I(t) = 
𝑉𝑏

𝑅
 - K e-Rt/L 

I(0) = 0      I(t) = 
𝑉𝑏

𝑅
 (1- e-Rt/L) 

 

VR(t) = R I(t) = V(1- e-Rt/L) 
VL(t) = V – VR = V e-Rt/L 
 
The rate of change of the inductor and the resistor is equal to L/R (s). 
 
 
The characteristic time for both charging and discharging is the RC-time. The smaller this value, the 
faster the system reacts.  
 
Alterning currents 
 
AC circuits: electric circuit with voltage of current supplies which periodically change direction. The 
voltage of such a source varies harmonically:  
V(t) = V sin(ωt + α) = V sin(ω(t+T) + α)  with ω = 2πf and T = 1/f = 2π/ω 
V is the amplitude, ω the angular frequency and α the phase. 
 
Harmonic signals occur very often in nature, because they are projections of a circular movement 
along one of the axes. 
 
Resistance in an alternating circuit: the current through the resistance has the same phase as the 
voltage. 

V(t) = V * eiωt (= cos ωt + i sin ωt) 

This means that V(t) = I(t) R = R IR eiωt where R = V/IR 
 
Capacitor in an alternating circuit:  

V(t) = V * eiωt 

This means that V(t) = VC = Q/C = 
1

𝐶
 ∫ 𝐼(𝑡)𝑑𝑡 

Differentiate with respect to time: 

iω V eiωt = 
1

𝐶
 I(t)      I(t) = iωC V(t)    I(t) = ωCV ei(ωt+π/2)    



Ohm’s law in complex notation: impedance, Z. The impedance contains information both about the 
size as well as the phase of the quantity. The impedance of a capacitor is purely imaginary which 
indicates that the functions for V and I are 90° shifted with respect to each other. 
 
Inductor in an alternating circuit:  

V(t) = L 
𝑑𝐼

𝑑𝑡
 

L * I(t) = ∫ 𝑉(𝑡)𝑑𝑡 = ∫ 𝑉 eiωt  

I(t) = 
1

𝑖𝜔𝐿
 V eiωt = 

1

𝑖𝜔𝐿
 V(t) 

Z = V(t)/I(t) = iωL 
Here also a factor i used, meaning that in the inductor, the current and voltage are 90° shifted. 
 
Impedance 
The impedance Z is always determined by two parameters: a) either by the real and imaginary 
component of the impedance b) or by the modulus |Z| and the argument φ. 
 
Impedance of a resistor:  
Z = R      |Z| = R  φ = 0 
Impedance of a capacitor: 

Z = 
−𝑖

𝜔𝐶
    |Z| = 

1

𝜔𝐶
  φ = -1/2π 

Impedance of a coil: 
Z = iωC 
 
Impedances in series just add up, and in parallel they follow the law of parallel resistors. 
 
The RC-filter in an RC-circuit. 
 

Vin = V*eiωt  
ZR = R  ZC = -i/ωC Z = ZR + ZC 

|Z| = √𝑅2 +  (
1

𝜔𝐶
)

2
   and the angle φ = arctan(

1

𝜔𝑅𝐶
) 

Vin = Z * I 

V*eiωt = |Z| eiφ * I 

I = 
𝑉

|𝑍|
 ei(ωt – φ) 

 
VC = I ZC  
Vin = I (ZC + ZR) 
 

𝑉𝑐

𝑉𝑖𝑛
 = AC (transfer function) =  

𝑍𝑐

𝑍𝑐+𝑍𝑟
  =  

−
𝑖

𝜔𝐶

−
𝑖

𝜔𝐶
+ 𝑅

 

Multiply with complex conjugate: 

AC = 
1−𝑖𝑅𝜔𝐶

1+𝑅2𝜔2𝐶2 

 

The amplitude of the ratio: |AC| = 
1

√1+(𝜔𝑅𝐶)2
 

The phase difference: φ = - arctan(ωRC) 
Characteristic point: ωRC = 1 
 
𝑉𝑟

𝑉𝑖𝑛 
 = AR = 

𝑍𝑟

𝑍𝑟+𝑍𝑐
  =  

(𝜔𝑅𝐶)2+ 𝑖𝜔𝑅𝐶

1+(𝜔𝑅𝐶)2       |AR| = 
𝜔𝑅𝐶

√1+(𝜔𝑅𝐶)2
                  φ = arctan(

1

𝜔𝑅𝐶
) 

 



The RL-filters in an RL circuit 
 

Z =ZR + ZL = R + iωL = |Z| eiφ 

|Z| = √𝑅2 +  𝜔2𝐿2                         φ = arctan(
𝜔𝐿

𝑅
) 

I = 
𝑉

|𝑍|
 ei(ωt – φ) 

AL = 
𝑉𝑙

𝑉𝑖𝑛
  =  

𝑍𝑙

𝑍𝑙+𝑍𝑟
 = 

𝑖𝜔𝐿𝑅+ 𝜔2+𝐿2

𝑅2+ 𝜔2𝐿2          |AL| = 
𝜔𝐿

𝑅

√1+(
𝜔𝐿

𝑅
)

2
             φ = arctan (

𝑅

𝜔𝐿
) 

If R/L = RC than both filters are identical. 
 

AR = 
𝑅2− 𝑖𝜔𝐿𝑅

𝑅2+ 𝜔2𝐿2                                |AR| = 
1

√1+(
𝜔𝐿

𝑅
)

2
                      φ = arctan (

𝜔𝐿

𝑅
) 

 
Decibels 
The decibel is a relative scale for comparing aspects in a wide range of orders of magnitude, such as 
sound level, but also the strength of electric signals.  
10 * 10log(ratio) = difference in dB 
 

LCR resonance circuit 
 

Z = R + iωL - 
𝑖

𝜔𝐶
 

|Z| = √𝑅2 +  (𝜔𝐿 −
1

𝜔𝐶
)

2
  

This has a minimum (maximal amplitude) when ω = √
1

𝐿𝐶
 

φ = arctan(
ωL−

1

ωC

𝑅
 ) for ω = √

1

𝐿𝐶
 

 

AC = 
𝑍𝑐

𝑍𝑐+𝑍𝑙+𝑍𝑟
  = 

1

ωC
((

1

ωC
− ωL)− iR)

𝑅2+ (ωL−
1

ωC
)

2  

|AC| = 
1

ωC

√𝑅2+ (ωL−
1

ωC
)

2
 

|AL| = 
ωL

√𝑅2+ (ωL−
1

ωC
)

2
 

|AR| = 
R

√𝑅2+ (ωL−
1

ωC
)

2
  

 
With the voltage supply turned off: 
VR + VC + VL = 0 
I R + Q/C + L dI/dt = 0 

 
𝑑2𝐼

𝑑𝑡2 + 
𝑅

𝐿
 
𝑑𝐼

𝑑𝑡
 + 

1

𝐿𝐶
 I = 0 

 
Similarities with mechanical equations! 

ω0 = 1/√𝐿𝐶 
γ = R/2L 

Weak damping: ω0 > γ = R/2L < 1/√𝐿𝐶  = R/2√
𝐿

𝐶
 

 



With voltage supply: 
VR + VC + VL = Vin 
Vin = V0 sin(ωt) 

  
𝑑2𝐼

𝑑𝑡2 + 
𝑅

𝐿
 
𝑑𝐼

𝑑𝑡
 + 

1

𝐿𝐶
 I = 

𝑉0ω

𝐿
 cos(ωt) 

 
Use the formula provided in the mechanical equations and change the coefficients: 

I(t) = 
𝑉0ω

𝐿√(ω2−ω02)2+ (
R

L
)

2
ω2

 sin(ωt-α) 

Phase between the current and the voltage: tan α = 
(ω2−ω02)L

𝑅ω
 

 

ωRES = √ω02 −  (
R

2L
)

2
  = 

√𝐿

𝐶
−

𝑅2

2

𝐿
 

 

When ω0 = 
1

√𝐿𝐶
 , the voltage and the current have the same phase which means that the system is 

quasi-real (phase-resonance). 
 
 
Energy in mechanical systems:  

Ekin = ½mv2 = ½ (
𝑑𝑥

𝑑𝑡
)2 

Epot = ∫ − 𝐹 𝑑𝑥 = ∫ 𝑘𝑥𝑑𝑥
𝑥

0
 = ½mω2x2 

 
Energy in electrical systems: 
 

- Energy in capacitor 
V = Q/C 
dW = dQ V 
 W = ∫ 𝑑𝑊 = ∫ 𝑉 𝑑𝑄 = 1/C ∫ 𝑄 𝑑𝑄  = ½ Q2/C 
> W = ½CVC

2 
 

- Energy in inductor 
V = -L (dI/dt) 
dW = dQ V = dQ/dt*V*dt = I*V*dt = I*L*(dI/dt)*dt = L*I*dI 
 W = ∫ 𝑑𝑊 = ∫ 𝐿 𝐼 𝑑𝐼 = ½LI2 
 
The total energy in the circuit moves from the inductor to the capacitor and vice versa every ¼ 
period. The resistor in the circuit converts electrical energy into heat, so this is where energy is lost 
from the circuit. If the lost energy is not replenished, the amplitude of the current in the circuit will 
decrease with every oscillation.  
 
Energy transformed in heat per oscillation:  
P = I2 R = I2

maxcos2(ωt)R  with Imax as the current amplitude 
Integrating over one cycle of oscillation: 

W = ∫ 𝐼2 max∗ cos2(𝜔𝑡) ∗ 𝑅 𝑑𝑡
2𝜋/𝜔

0
 = ∫ 𝐼2 max∗

1

2
∗ 𝑅 𝑑𝑡 = ½ RI2

max * 
2𝜋

𝜔
 

 
The relative importance of the energy loss. Take the moment that all the energy is present in the 
inductor: Wtot = ½ LI2

max 

Q = 2π 
𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦

𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
 = 2π 

1

2
 𝐿 𝐼2 max  𝜔

1

2
 𝑅 𝐼2 max  2𝜋

 = 
𝜔

𝑅/𝐿
 



Q is the quality factor of the oscillatory circuit. R/L is damping = 2γ in mechanical circuits.  
 
Expression for the current (more important than transfer across the components: 

I(t) = 
𝑉0ω

𝐿√(ω2−ω02)2+ (
R

L
)

2
ω2

 sin(ωt-α) 

Amplitude I0 = 
𝑉0

√ 𝐿2

𝜔2 (𝜔2−𝜔02)+ 𝑅2

 

The current amplitude is maximum if ω = ω0 
Imax = I0(ω0) = V0/R 
 

Critical frequency: the value ω for which I0 has decreased to 1/√2 * Imax 

Then the term under the square root must be doubled: 
𝐿

ω
 (ω2 – ω0

2) = 
𝐿(ω− ω0)(ω +ω0)

ω
 = R 

You can solve this but an approximate approach gives more insight. This approximation is based on 
the fact that the bandwidth of the resonance peak is small relative to the value of ω0. 

 
ω+ ω0

ω
 ≈ 2; ω- ω0 = Δ ω 

> R = 2LΔω    2Δω = R/L 
 
2𝛥ω

ω0
 = 

𝑅

𝐿 ω0
 = 

1

𝑄
 

So the quality factor is directly related to the relative width of the resonance.  
  



Systems dynamics 

Systems engineering: an interdisciplinary field of engineering that focuses on how to design and 
manage complex engineering systems over their life cycles. 
Important aspects: 

1. Context & relations  
2. Zoom out 
3. Loop effects 
4. Time delays 
5. Dynamics 
6. Patterns 

Goal: gaining influence on the system 
 
A system is a dynamic and complex whole, interacting as a structured functional unit. In general one 
studies material, information and energy flow. 
 
Production organizations can be classified by for example: 
execution (manual or by machine), process (single or 
combined), logistics, process type and layout. 
 
 
 
Work In Progress (WIP): number of products in the system. 
Batch size: multiple products in a batch that are processed at 
the same time. 
Cycle time / throughput time (CT): the time between the product entering and exiting the system. 
Throughput rate (TH): the number of products that leave the system per time unit (heartbeat). 
Bottleneck: process that takes the longest time. 
Idle time: time a machine is not used (a station other than the bottleneck). 
Utilization of a workstation: fraction of time the workstation is not idle (includes machine failure or 
set-up time). 
Balancing: changing the workload of the stations in order to evenly distribute the work. 
Lead time: the time allotted for production. 
Bottleneck rate, rb: the rate of the workstation having the highest utilization. 
CONWIP: the WIP on a production line is kept constant. 
 
A production line contains similarities with a DC circuit.  
Kirchoff’s first law: ∑ 𝐼 = 0  the sum of jobs at a branching point should be 0. 
Ohm’s law: V = I R  Little’s law: WIP = throughput rate * cycle time 
When there is more WIP than the number of machines on the production line, the cycle time will 
increase due to waiting times while the throughput will remain the same.  
 
 

  



CTbest is the Best Case Performance. The turning point in the graph is called the critical WIP (W0). 
THbest is the Best Case Performance. The turning point is again the critical WIP. 
w : the WIP applied  T0: raw processing time.  
 
Worst case performance: the products are treated as a batch. 
CTworst = WIP * T0 
THworst = 1/T0 
 
Factories use batching in order to avoid changeovers and long set-up times on machines. 
 
In practice the performance of a factory will lie between the Best and Worst case performance: the 
Practical Worst Case. 
 
Maximum randomness: every possible state occurs with equal frequency. 

1. All stations have the same average processing times (well balanced line). 
2. All stations consist of single machines. 
3. The processing time follows exponential distribution. 

 
We can write down states in terms of vectors, every state is equally likely to occur: 
(3,0,0,0) (0,3,0,0)    (1,0,1,1) (0,1,1,1)  spread out 
 
T0 = number of stations * average production time = N t 
rb = 1/average production time = 1/t 
w: number of jobs 
 

CTPWC(machine) = t + 
𝑤−1

𝑁
 t 

CTPWC(line) = Nt + (w-1)t = T0 + 
𝑤−1

𝑟𝑏
 

THPWC = 
𝑊𝐼𝑃

𝐶𝑇𝑝𝑤𝑐
 = 

𝑤

𝑇0+(𝑤−1)/𝑟𝑏
  = 

𝑤∗𝑟𝑏

𝑊0+𝑤−1
  (T0 = W0/rb) 

 
A supply chain is the entire network entities serving the same consumer of customer. Producers 
compete with each other only through their supply chains.  

 
𝑑𝑁𝑖(𝑡)

𝑑𝑡
 = Qi

in(t) – Qi
out(t) 

 
Qi

out = Qi+1
in 

 
𝑑𝑁𝑖(𝑡)

𝑑𝑡
 = Qi(t) – Qi+1(t) 

 
 
Instabilities in a supply chain often take the shape of oscillations in demand. The bullwhip effect 
refers to a trend of larger and larger swings in inventory in response to changes in demand, as one 
looks at companies further back in the supply chain of a product.  
Sources of bullwhip effect: 

- Demand forecasting 
- Order batching 
- Long delivery times 
- Price fluctuations 
- Promotions 
- Demand interpretation 



 
Trial function from management: 
𝑑𝑄𝑖(𝑡)

𝑑𝑡
 = 

1

𝑇
 (

𝑁𝑖0− 𝑁𝑖(𝑡)

𝜏
 – β 

𝑑𝑁𝑖

𝑑𝑡
  + ε(Qi

0 – Qi(t))) 

Where: 
Ni

0 = steady-state inventory 
Qi

0 = steady-state delivery rate 
T = interval time over which a full oscillation 
takes place 
τ,β, ε = constants 
 
ni(t) = Ni(t) – Ni

0 
qi(t) = Qi(t) – Qi

0 
 
𝑑𝑁𝑖(𝑡)

𝑑𝑡
 = Qi(t) – Qi+1(t) 

 

Substitute:  
𝑑𝑞𝑖(𝑡)

𝑑𝑡
 = 

1

𝑇
 (

−𝑛𝑖(𝑡)

𝜏
 – β 

𝑑𝑛𝑖

𝑑𝑡
  + ε.qi(t)) 

 
𝑑𝑛𝑖(𝑡)

𝑑𝑡
 = qi(t) – qi+1(t) 

 
Substitute: 
𝑑𝑞𝑖(𝑡)

𝑑𝑡
 = −

1

𝑇
 (

𝑛𝑖(𝑡)

𝜏
 + β (qi(t) – qi+1(t))  + ε.qi(t)) 

 
Differentiate: 
𝑑2𝑞𝑖(𝑡)

𝑑𝑡2  = −
1

𝑇
 (

1

𝜏
 
𝑑𝑛𝑖(𝑡)

𝑑𝑡
 + β( 

𝑑𝑞𝑖(𝑡)

𝑑𝑡
 – 

𝑑𝑞𝑖+1(𝑡)

𝑑𝑡
 )  + ε 

𝑑𝑞𝑖(𝑡)

𝑑𝑡
) 

 
Again substitute and simplify: 
𝑑2𝑞𝑖(𝑡)

𝑑𝑡2   + 
𝛽+ 𝜀

𝑇
 
𝑑𝑞𝑖(𝑡)

𝑑𝑡
  + 

1

𝑇𝜏
 qi(t) = 

1

𝑇
 (

1

𝜏
 qi + 1(t) + β

𝑑𝑞𝑖+1(𝑡)

𝑑𝑡
 ) 

 
We see that the system is driven by customers. 
Implies that:  

γ = 
𝛽+ 𝜀

2𝑇
 

ω0 = 1/√𝑇𝜏 

λ1,2 = -γ ± √𝛾2 − 𝜔𝑜2 = - 
1

2𝑇
 ((β + ε) ± √(𝛽 + 𝜀)2 −

4𝑇

𝜏
 ) 

In order to have damping, the first term should be negative: (β + ε) > 0. 
 
In business it is critical that damping takes place. Instabilities should quickly be suppressed.  
Weakly damped: bullwhip effect. 
 
Lee 
Companies need to understand what creates the bullwhip effect in order to counteract it. 

1. Demand forecast updating: long lead times > great bullwhip effect due to safety stocks. 
2. Order batching: periodic ordering amplifies variability. 
3. Price fluctuation: the buying pattern does not reflect the consumption pattern. 
4. Rationing and shortage gaming: orders give little information about the real demand. 

 
Solutions: 

1. Information sharing: demand information at a downstream site is transmitted upstream in a 
timely fashion.  

2. Channel alignment: the coordination of pricing, transportation, inventory planning, and 
ownership between the upstream and downstream site in a supply chain. Provides incentives 
for customers to adjust order size and period according to suppliers preferences. 

3. Operational efficiency: activities that improve performance such as lead-time reduction. 
 
Distorted information: the lack of knowledge on orders placed in the supply chain. This is due to bad 
forecasting and unknown backlogs. Not communicating with parties further in the supply chain 
causes uncertainty in ordering. When a customer in the supply chain runs out of stock, a backlog can 
form. This backlog adds to the ordering in the next order, resulting unstable ordering behavior. 
 


